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ABSTRACT

To make the best use of Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) data
an investigator needs to know the ratio of signal to
random variability or ‘'noise' (S/N ratio). The
signal is land-cover dependent and decreases with
botn wavelength and atmospheric absorption and
random noise comprises sensor noise and intra-pixel
variability. The three existing methods for
estimating the S/N ratio are inadequate as typical
'laboratory!' methods inflate, while 'dark current'
and 'image' methods deflate the S/N ratio.

We propose a new procedure called the
'geostatistical' method. It is based on the removal
of periodic noise by ‘'notch filtering' in the
frequency- domain and the isolation of sensor noise
and intra-pixel variability using the
semi-variogranm. This procedure was applied easily
and successfully to five sets of AVIRIS data from
the 1987 flying season.

INTRODUCTION

To optimize the use of Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) data there is a need to know the random
variability or 'noise' associated with the sensor's signal. This
information is required by the user community, as spectral zones of high
and low noise will be common to each land-cover and by every
investigator, as noise determines the accuracy with which absorption
features can be distinguished in the spectra and objects can be detected
on the ground. Noise alone is not a very useful measure, as a given
level of noise will have a more deleterious effect on data quality if
the signal is low. Therefore, the signal to noise, (S/N) ratio, which
can be estimated by the ratio of the signal's mean (X) to its standard
deviation (s), will be used here.

The major part of the noise in the AVIRIS signal is additive to the
signal and the signal decreases sharply with both an increase in
wavelength and atmospheric absorption. Consequently, plots of S/N ratio
versus wavelength will be similar in form to signal versus wavelength
for each land-cover under investigation.

The aim of the work reported here was to develop a procedure for
estimating the per-waveband S/N ratio of AVIRIS data.
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ESTIMATING THE S/N RAT1O OF AVIRIS DATA

AVIRLS data contain periodic (coherent) sensor noise, that can be
removed and random noise that cannot. The noise of relevance to the
investigator is random noise: the random sensor noise, which is image
independent and intra-pixel variability, which is a result of spatially
heterogeneous pixel contents and is image dependent. Unfortunately,
methods commonly used to estimate the S/N ratio of remotely sensed
imagery (termed for convenience ‘'laboratory,' ‘'dark current! and
‘image’) do not isolate this random noise for the investigator (Table

1).

Table 1. Existing methods for estimating the S/N ratio of AVIRIS data
showing the level of signal and type of noise to be estimated.
As an investigator's spectra can be free of periodic noise and
inter-pixel variability a S/N ratio is required that contains
only random sensor noise and intra-pixel variability.
Therefore, these three methods either underestimate or
overestimate the S/N ratio required by the investigator.

Method Signal Type of noise Estimated Two examples
level Periodic Random S/N ratio from these
in relation proceedings
Sensor Sensor Intra- Inter- | to that
noise noise pixel pixel required by
varia- varia- | investigator
bility bility
'Labor- Artif- X X Higher Vane
atory! icially Porter
high
'Dark Natural X X X Lower Abrams and
current! Carerre
Vane and
Green
'Image' Natural X X X X Lower Conel et al.
Clark

A typical 'laboratory, method uses the X and
high (e.g., 50%) albedo to estimate the S/N ratio for

surface with a

only a few wavebands.

of a homogeneous

The presence of periodic noise will decrease the

measured S/N ratio below that required by the investigator (see above)

but this is more

variability and

signal dark currents

than compensated by the
more importantly,

as

omission of

intra-pixel

by the use of an artificially high
signal. A typical 'dark current' method uses variation (e.g., s) in the
This value includes

a nmeasure of

noise.

periodic noise which deflates the S/N ratio below that required by the
method uses the X and s of four, or

investigator.

A typical
more, visually homogeneous pixels as an estimate of the S/N ratio.

'image'
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resultant value is deflated below that required by the investigator, for
it includes periodic noise (this could have been removed) and
inter-pixel variability, which even on a visually homogeneous area can
be around 2% of X (Conel et al., 1987).

To estimate the S/N ratio of the investigator's data a new procedure
is proposed and this we have termed the 'geostatistical' method.

THE 'GEOSTATISTICAL' METHOD FOR ESTIMATING THE S/N RATIO

Following the removal of periodic noise there is a need to estimate
random noise, free of inter-pixel variability (Table 1). We therefore
require an estimate of variability at a pixel and a tool to do this is
the semi-variogram (Curran, 1988). This is produced from a transect of
pixels where the radiance z, at pixel number x along the transect has
been extracted at regular intervals and where x = 1, 2, ..., n. The
relation between a pair of pixels, h intervals apart (the lag distance)
can be given by the variance of the differences between all such pairs.
This value, the semi-variance y(h), for pixels at distance h apart is
given by half the expectation E of their squared difference,

y(h) =172 E[z(xi)—z(xi+h)]2. (1

Within the transect there will be m pairs of observations separated by
the same lag, this is estimated by,

— m 2

S"=1/2m g [z(xy)-z(x3+h)] . (2)
2 i=1
S 1is an unbiased estimate of the semi-variance, y(h), in the population
(Webster, 1985) and is a wuseful measure of the difference between
spatially separate pixels (Jupp et al., 1988). The larger 5% is and
therefore y(h), the less similar the pixels will be. The semi-variogram
is a plot of the function that relates semi-variance to 1lag (Fig. 1)
and is described in Webster (1985) and Curran (1988). Three aspects of
the semi-variogram are of interest here: (s) sill, the asymptotic
upperbound value of y(h); (Co) nugget variance, the limit of y(h) when h
approaches 0 and (C) spatially dependent structural variance, the sill
minus nugget variance. By definition y(h)=0 when h=0 (Journal and
Huijbregts, 1978), in practice however the 1limit of y(h) when h
approaches 0 1is positive because the nugget variance represents
variability at scales smaller than a pixel.

The nugget variance is a sound estimate of spatially independent
image noise at the scale of a pixel as it comprises random sensor noise
and intra-pixel variability. The square root of this variance can be
used to estimate the standard deviation of the random noise and thereby
the S/N ratio of AVIRIS data,

S/N ratio = x//£o . (3)

The assumptions underlying the use of nugget variance as an estimate
of random noise are summarized in Table 2.
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Fig. 1. Semi-variograms for three wavebands of AVIRIS data recorded
for a plantation forest near Gainesville, Florida (Table 3).

Table 2. Assumptions in the use of nugget variance as an estimate of
random noise (random sensor noise and intra-pixel variability)
in AVIRIS data.

Assumption Explanation or reason Comments on assumptions in
relation to AVIRIS data
Stationarity Spatial dependence of Generally true within a land
pixels is a function of cover,
lag and not location.
Isotropy Nugget variance is Untrue, due to gain and offset

Fixed spatial
resolution

Scene does not
contain random
information.,

Nugget variance
is independent
of spatially
dependent
structural
variance.

independent of transect
direction.

Intra-pixel variability
and therefore nugget
variance is dependent
upon spatial resolution.

Random features in scene
increase nugget variance
and could contain
information.

Limit of y(h) when h
approaches 0 has minor
dependence upon the slope
of the semi-variogram.

variability therefore use row
or column transects.

True.

Generally true but need to
check.

Untrue, but point-spread-
function of sensor ensures
that y(h) when h approaches

0 is similar to that at small
lags and so the effect of
this violation is minimal.
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THE 'GEOSTATISTICAL' METHOD FOR ESTIMATING THE S/N RATIO OF AVIRIS DATA

Application of the ‘'geostatistical' method involved two stages,
first, data selection and preprocessing and second, estimation of the
S/N ratio for each waveband of AVIRIS data.

Selection and preprocessing of A

Five AVIRIS data sets were selected (Table 3). They were recorded
around solar noon, over a wide range of dates and land-covers. All data
were converted from grey 1levels to radiance and radiometrically
calibrated at JPL (Vane et al., 1987) and on receipt dropped scan lines
were replaced with the means of adjacent lines.

Table 3. AVIRIS data for which the S/N ratio was estimated.

Location Land-cover Date of data Time of data
of interest acquisition acquisition

(1987) (start, hrs.)

Mountain View, Sediment-laden 25 June 12:40

California water

Gainesville, Plantation 4 July 11:49

Florida forest

Yuba City, Bare soil 30 July 12:49

California

Metolius, Semi-natural 1 August 11:14

Oregon forest

Cuprite, Bare soil 14 September 11:14

Nevada

The 1987 AVIRIS data contained considerable periodic noise, produced
by the inadvertent coupling of the image signal with electrical and
mechanical signals. This noise was dominated by frequencies around two
pixels per cycle and increased in severity as the season progressed
(Fig. 2). The major periodic noise frequencies were removed by 'notch
filtering' in the frequency domain of the image (similar to Hlavka,
1986) (Table 4, for method). By comparison with prefiltered spectra
this removal of major periodic noise made no difference to the relative
radiometry and by comparison with prefiltered semi-variograms it reduced
considerably the spatially dependent structural variance (C). The
visual effects of such filtering are illustrated in Figs. 3 to 7 for
the waveband centered at 1.018 um. The success of this preprocessing
was attributed to: (i) clarity of the noise, especially from 0.68 to
1.27um (a result of low gain) and 1.84-2.40 um (a result of low signal);
(ii) clarity of the major periodic noise spikes in the vertical
component of the frequency domain; (iii) spectrometer-independence of
the major periodic noise frequencies and (iv) relatively homogeneous
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sub-scenes with little chance of 'ringing' (crenulated tonal boundaries)
in the filtered images (Moik, 1980).
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Fig. 2. The major types of periodic noise observed in five sets of
AVIRIS data (Table 3). The noise characteristics were
determined from the location of major periodic noise spikes in
the frequency domain.

Table 4, Removing the major periodic noise in AVIRIS data.

Stage Procedure

1 Select 256 x 256 pixel sub-scene in one waveband.

2 Use fast Fourier transform to create a frequency domain image;
ma jor periodic noise appears as a series of spikes, each
representing energy concentration at a specific frequency.

3 Design a 'notch filter', O0's represent the location of major
periodic noise spikes and 1's represent the remainder; multiply by
frequency domain image to create a new frequency domain image
without major periodic noise spikes.

4 Invert filtered frequency domain image to create spatial domain
image with no major periodic noise.

5 Repeat 4 on selected wavebands from each spectrometer. Define
spectrometer-independent notch filter and use to filter all AVIRIS
wavebands.
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Estimating the S/N ratio for each waveband of AVIRIS data

The procedure for estimating the S/N ratio for each waveband of
AVIRIS data is given in Table 5 and the results in Figs, 3 to 7. As
was noted in the introduction, noise varies little with wavelength but
the signal drops sharply with both an increase in wavelength and
atmospheric absorption. As a result the first-order forms of the S/N
ratio plots (Figs. 3 to 7) were signal dependent. The spectral zones
of very high S/N ratio were green/red (0.50-0.70um) for water and soil
and near infrared (0.95-1.10um) for vegetation. The spectral zones of
high S/N ratio were blue for water and soil (0.40-0.50pm), green/red
(0.50-0.70um) for vegetation and near infrared (0.85-0.90, 0.95-1.10um)
for vegetation and soil respectively. The spectral zones of medium S/N
ratio were blue (0.40-0.50um) for vegetation and the near infrared
regions (0.70-0.85um) for water and vegetation, (0.85-0.95um) for water
and soil, (0.90-0.95um) for vegetation and (0.95-1.10um) for water. The
regions of low and very low S/N ratio were near and middle infrared
wavelengths in zones of low signal, either at long wavelengths or in
atmospheric absorption bands. These spectral zones of S/N ratio are a
useful summary of the utility of specific AVIRIS wavelengths from the
1987 flight season. Of more importance is the potential use of the
'geostatistical' method by individual investigators to plan for the
restrictions that random noise places on the analysis of AVIRIS data.

Table 5. Estimating the S/N ratio in AVIRIS data.

Stage Procedure

1 Locate three row transects within a 1land-cover, each transect

75~100 pixels 1long to ensure that the statistically significant

first fifth of the semi-variogram is at least 15 lags.

Calculate the mean signal (X) and semi-variogram for each waveband.

Determine the nugget variance (Co) by extrapolating the slope of

y(h)/h for each waveband. (Here the extrapolation was based on a

linear fit over 8 lags, Fig. 1).

4 Plot X//Co versus wavelength and X (with a ,/Co envelope) versus
wavelength as two representations of the S/N ratio (Figs. 3 to 7).

w

CONCLUSIONS

A new prodedure, that we have called the 'geostatistical' method,
was used to estimate the S/N ratio of five sets of AVIRIS data. This
method was designed around the needs of the AVIRIS investigator and has
the following advantages: (i) it estimates only noise that is relevant
to the investigator, unlike the existing ‘'laboratory,' 'dark current'
and 'image' methods, (ii) it requires acceptable assumptions and (iii)
is easy to apply.
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Removal of major periodic noise
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Fig. 3. Estimating the S/N ratio for sediment-laden water in the
AVIRIS data of Mountain View, California (Table 3). Above:
removal of major periodic noise by 'notch filtering' in the
frequency domain. Below: (a) the S/N ratio versus wavelength
and (b) the signal, with noise envelope, versus wavelength for
three image transects.
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Estimating the S/N ratio for a plantation forest in the AVIRIS
data of Gainesville, Florida (Table 3). Above: removal of
major periodic noise by 'notch filtering' in the frequency

(a) the S/N ratio versus wavelength and (b)
for three

domain. Below:
the signal, with noise envelope, versus wavelength
image transects.
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Removal of major periodic noise
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Fig. 5. Estimating the S/N ratio for bare soil in the AVIRIS data of
Yuba City, California (Table 3). Above: removal of major
periodic noise by 'notch filtering' in the frequency domain.
Below: (a) the S/N ratio versus wavelength and (b) the
signal, with noise envelope, versus wavelength for three image
transects.

45




Removal of major periodic noise
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Fig. 6. Estimating the S/N ratio for semi-natural forest in the AVIRIS
data of Metolius, Oregon (Table 3). Above: removal of major
periodic noise by 'notch filtering' in the frequency domain.
Below: (a) the S/N ratio versus wavelength and (b) the
signal, with noise envelope versus wavelength for three image
transects.
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Fig. 7. Estimating the S/N ratio for bare soil in the AVIRIS data of
Cuprite, Nevada (Table 3). Above: removal of major periodic
noise by 'notch filtering' a fast Fourier transform. Below:
(a) the S/N ratio versus wavelength and (b) the signal, with
noise envelope, versus wavelength for three image transects.
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